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Abstract 

In the process of structural analysis we often come to structures that can be analyzed with simpler methods than the 
standard approaches. For these structures, known as regular structures, the matrices involved are in canonical forms and 
their eigen-solution can be performed in a simple manner. However, by adding or removing some elements or nodes, such 
methods cannot be utilized. Here, an efficient method is developed for the analysis of irregular structures in the form a regular 
structure with additional or missing nodes or with additional or missing supports. The power of the method becomes apparent 
when the analysis should be repeated many times as it is the case in optimal design. 

Keywords: Regular graph, Irregular graph, Equilibrium matrix, Eigen-Solution, Analysis of structure, Singular value 
decomposition. 

1. Introduction 

Pellegrino and Calladine [1] and Pellegrino [2] in order 
to avoid the inversion of the stiffness matrix, used singular 
value decomposition of the equilibrium matrix. Guest [3] 
found that exact tangent stiffness matrix of structure being 
described by the equilibrium and stress matrix. He 
presented a simple derivation of the tangent stiffness 
matrix for a pre-stressed pin-jointed structure and 
compared to some formulations that could be found in the 
literature for finding the structural response of pre-stressed 
structures. 

Pellegrino and Calladine classified structural assemblies. 
Based on singular value decomposition, the criterion for 
geometrical stability of mechanism was introduced by 
Pellegrino [4]. 

Singhal and Singhal [5] and Katz and Singhal [6] used 
compatibility matrix (transpose of equilibrium matrix) in 
design process of substructures for providing compatibility 
between parts. Lu et al. [7] presented a matrix-based 
method for the determination of the mobility and stable 
equilibrium mechanisms according to the effects of the 
external loads. In this process, the first and second 
variations of the potential energy function of mechanisms 
under conservative force field were analyzed. Based on  
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this method, singular value decomposition of equilibrium 
matrix was presented as a new criterion for the mobility 
and stable equilibrium mechanisms. 

Recently the authors presented a method to solve the 
problem of member irregularity [8]. This method was 
based on singular value decomposition of the equilibrium 
matrix. In the follow up, in this article the method is 
extended to provide efficient tool to solve the problem of 
node irregularity and consequently the problem of multi-
irregularities is solved. Therefore, we consider the basic 
relations of the previous article and make only the 
necessary additions to cover the new irregular forms. 
Further details of the new method can be found in the 
previous article of the authors. 

Here a method is developed for the analysis of regular 
structures with additional nodes, missing nodes or supports. 
Then an algorithm is present for solving different types of 
irregularity. In this method we use singular value 
decomposition of the equilibrium matrix for solution of the 
structures. Thus, the method can solve geometrically 
unstable structures that become stable by applying special 
external forces. Hence, this method has special applications, 
because of having these two useful abilities, namely 
simultaneously solving different type of irregular unstable 
structures. This method is applicable to various types of 
structures such as frame, truss and finite element models. 

One of the main applications of this paper is its use in 
optimal design of structures. In fact in each step of the 
optimization instead of analysis of the entire structure only 
a small part can be analyzed and combined with results of 
the previous step. This results in saving a considerable 
amount of computational time. 

After the introduction in Section 2 of this article, the 
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basic relationships of the equilibrium matrix are presented. 
In Section 3, the analysis method of structures with 
additional or lack of nodes is provided. In this section, 
essential tips of the equilibrium matrix relations are 
expressed as a step by step process. In Section 4, the 
method is extended for structures with irregular supports. 
In Section 5 some practical examples are presented to 
show the efficiency of the method in improving the rate of 
analysis. Section 6 concludes the article. 

In Appendix A the notations are presented and in 
Appendix B the important equations used in the paper are 
described. 

2. Basic Definitions and Concepts 

An irregular structure is decomposed into a regular 
structure, and an irregular part containing nodes and 
elements changing a regular structure into an irregular one. 
In this method, we utilize the equilibrium matrix to 
analyze two separated parts of structure independently. At 
the end, the final results can gain by assembling the results 
of the two parts in an appropriate form. 

On this basis, the structure components are named as 
follows: 

"Irregular structure" is a structure that has lost its 
simple analysis form by adding or removing some parts 
(elements, nodes or supports). Elements that by removing 
them, irregular structure will have simple analysis form are 
named "irregular Element". "Regular structure" is a part of 
an irregular structure that is obtained by eliminating the 
irregular elements and it independently has simple analysis 
form. "Irregular nodes" are some irregular structural nodes 
that do not belong to the regular structural nodes. It is 
obvious that by adding regular structure and irregular 
elements and nodes, we will obtain irregular structure. 

This paper uses the method of Ref. [2] and Ref. [8] for 
structural analysis by singular value decomposition (SVD) 
of the equilibrium matrix. However, the fundamental 
changes have been made in using the equilibrium matrix. 
In [2] this method is employed for analyzing the structure 
directly; while here, we utilize it to fulfill the equilibrium 
and compatibility conditions between two regular structure 
and irregular elements of the structure.  

In the past, extensive research has been carried out to 
analyze the structures having regular forms. Thus, finding the 
inverse of the stiffness matrix of a regular structure is easily 
possible. In this regard, we can mention canonical forms that 
use "Kronecker product" to provide block-diagonal form of 
stiffness matrix [15, 16, 19-22, 27, 28]. In the other hand, by 
group theory, we can also simplify calulating the eigen-values 
and then find the inverse of the stiffness matrix of regular 
structures in some cases [17, 18, 23]. 

2.1. Structural analysis by equilibrium matrix 

In general, one can decompose a structure into its constituting 
components. In the following, nodal force equilibrium 
equations are created between the internal forces of structure's 
components. Thus, the equilibrium matrix, ܣ, is formed as 
 

.ܣ ܳ ൌ ܲ (1) 
 
ܲ is the vector of external loads and ܳ is the vector of 

internal forces of the components. The relation between 
the displacement vectors in local and global coordinate 
systems is presented in the following form: 

 
.௧ܣ ∆ൌ  (2) ߜ

 
Δ and δ are the nodal displacement vectors in the 

global and local coordinates system, respectively. 
As is described in Ref. [8], analysis results can be 

drived using SVD of equilibrium matrix easily. Hence, the 
internal forces of structural components can be presented 
by the following relation: 

 
ܳ ൌ ݒ݊݅݌ ሺܣሻ. ܲ െ ௭ܸ. ሺ ௭ܸ

ᇱ. .ܨ ௭ܸሻିଵ. ௭ܸ
ᇱ. .ܨ .ሻܣሺ ݒ݊݅݌  (3) ݌

 
௭ܸ contains the right singular vectors of the equilibrium 

matrix corresponding to zero singular values. Pinv is the 
notation used for the pseudo-inverse. ܨ is the block-
diagonal flexibility matrix of the structural components. 

Following, the governing equilibrium equation in local 
coordinate system is as follows: 

 
ߜ ൌ .ܨ ܳ ൌ ݒ݊݅݌ሺܨ ሺܣሻ. ܲ െ ௦ܸ. ሺ ௦ܸ

ᇱ. .ܨ ௦ܸሻିଵ. ௦ܸ
ᇱ. .ܨ ݒ݊݅݌ ሺܣሻ.  ሻ (4)݌

 
Here, nodal displacement vector Δ is obtained as: 
 

∆ൌ ݒ݊݅݌ ሺܣ௧ሻ. ߜ െ ௭ܷ. ሺܩ௧. ௭ܷሻିଵ. .௧ܩ .௧ሻܣሺ ݒ݊݅݌  (5) ߜ
 

௭ܷ contains the left singular vectors of the equilibrium 
matrix corresponding to zero singular values. The columns 
of the matrix ܩ are equivalent to the vector of geometric 
loads of the structure Ref. [4]. 

Considering the concept of the matrix Uz the following 
equation satisfies the equilibrium of the forces in the 
structure. 

 
௭ܷ
௧. ܲ ൌ ܼ (6) 

 
The matrix ௭ܷ contains some modal forces which do 

not satisfy the equilibrium. This means no multiple of 
these modes can be sustained by the structure. Thus for the 
above relationship to hold, the structure should either be 
stable or it can be unstable but with the help of some 
external forces it should have been made stable.  

In unstable structures, if Eq. (6) is satisfied, then ܩ can 
be provided by the following orthogonal relationship that 
is taken from Chapter 4 of Ref. [4]. 

 In this relation, the concept of vector of geometric 
load is utilized. This means a set of additional equations 
obtained from the equilibrating forces is used for 
calculating the vector of nodal displacements. 

 
.௧ܩ ∆ൌ ܼ (7) 

 
This is the same as the stiffness method; i.e. we 

assumed the compatibility to hold and we satisfy the 
equilibrium. 
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If the structure is stable, then ௭ܷ ൌ ሾሿ. . Therefore, the 
vector of nodal displacements of the structure is found as: 

 
∆ൌ .௧ሻܣሺ ݒ݊݅݌ ߜ ൌ 
.ᇱሻܣሺݒ݊݅݌ .ܨ ሺݒ݊݅݌ሺܣሻ. ܲ െ ௦ܸ. ሺ ௦ܸ

ᇱ. .ܨ ௦ܸሻିଵ. ௦ܸ
ᇱ. .ܨ .ሻܣሺ ݒ݊݅݌ ܲሻ (8) 

 
In the next section, the analysis of the structures with 

node irregularity is presented. 

3. Analysis of Regular Structures with Nodal 
Irregularity 

In the present section, analysis of regular structures with 
additional or lack of nodes is provided. On this basis, the 
previous analysis method will utilize for separate analysis 
of regular and irregular parts of structure. 

The difference between the current paper and the 
previous one [8] by these authors is in the generalization 
of the structural irregularity from element irregularity to 
nodes and supports. However, this article expands element 
irregularity and analyzes structures that include elements 

and the nodes irregularities simultaneously; the basic 
concepts of both papers are similar. 

3.1. Analysis of regular structure with additional nodes 

In this section, we describe an analysis method where 
nodes and elements are added to a regular structure. 

Example: Consider a 16-bar truss structure as shown in 
Fig. 1(a). If nodes 7 and 8, along with elements 12 to 16 
are separated from the structure, then the structure will be 
transformed into a regular structure form. Here, we 
consider the structure of Fig. 1(a) as an "irregular 
structure", nodes 7 and 8 as "irregular nodes" and elements 
12 to 16 as "irregular elements". Therefore, the structural 
form resulted by the separation of the irregular nodes and 
elements from the irregular structure is called "regular 
structure" (Fig. 1(b)). 

The external load of structure is assumed as following: 
 

ܲ ൌ ሾ0 െ10 0 0 0 െ20 0 0 40 െ30 0 0ሿ௧ 

 

 
(a) 

 
 

 
(b) 

Fig. 1 (a) A truss structure with 16 bars and its DOFs in the global coordinates system. (b) Display of the irregular elements on the right hand 
side and regular structure on the left hand side of the figure. 

 
Here, Pi represents the DOFs of the irregular structure 

and Qi represents the DOFs of the regular structure in 
global coordinate system and irregular elements in local 
coordinate system. 

3.1.1. Formation of the equilibrium matrix 

The equilibrium matrix is created for providing 
equilibrium and compatibility conditions between two 
parts of the irregular elements and regular structure. To 
achieve this, the force equilibrium equations between 
irregular elements and the regular structure are formed. 

The equilibrium matrix and its SVD matrices follow 
certain block form. It will be shown that the 

decomposition of whole parts of the equilibrium matrix is 
not required. In fact, the final results can be achieved by 
the analysis of a small part of this matrix. More, general 
form of the equilibrium matrix and simple method for its 
formation is provided. 

3.1.2. General form of the equilibrium matrix 

General form of the equilibrium matrix analyzed in this 
article is illustrated in Fig. 2. 
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Fig. 2 The general equilibrium matrix form used in the analytical 

method of this article 
 

Thus, the dimension of the equilibrium matrix can be 
introduced by the following equations: 

 
fitneeitm  ,1  (9) 

 
e is the number of DOFs of the additional nodes of the 

irregular structure. e1 is number of lack of DOFs that are 
required to form a regular structure. t and i are  the 
numbers of non-related and related DOFs of regular 
structure to irregular elements, respectively. f is the 
number of internal forces of the irregular elements. m is 
the number of DOFs of the irregular structure in the global 
coordinate system. n is total of number of DOFs of the 
regular structure in global coordinate and the number of 
DOFs of the irregular elements in local coordinate system. 

 ଵ is part of the equilibrium matrix which correspondsܣ
to the DOFs of the irregular elements and the related 
DOFs of the regular structure. 

According to Fig. 2, instead of SVD of whole parts of 
the equilibrium matrix, we can decompose only the matrix 
 ଵ Indeed, by analyzing a small part of the equilibriumܣ
matrix, the analysis of irregular structure can be 
performed. General form of matrix ܣଵ is as the form 
shown in Fig. 3. 

 

 
Fig. 3 General form of the matrix A1 

 
It should be noted that the matrix ܣଵ compared to the 

previous article of these authors [8] has changed, due to 
the added or lost degrees from the regular structure. In this 
method by extending the concept of matrix ,ܰ one can 
generate the process of irregular structure analysis to a 
situation in which the structural DOFs can be altered. 

3.1.3. The rapid formation of matrix A1  

Here, simple formation of the matrix ܣଵ is provided. ܣଵ 
can be formed easily by assembling the rotation matrix of 
the irregular elements. According to the form of matrix ܣଵ 
presented in Fig. 3, for the formation of this matrix only 
the assembly of matrix ܰ is required. Therefore, this 
matrix can be assembled as follows: 

If h is the DOFs of the two end nodes of the j th 
irregular element in local coordinates and g is the DOFs of 
the two ends of jth irregular element in the global 
coordinates (when it is connected to the irregular 
structure), then the columns of matrix ܰ correspond to the 
degrees h as follows: 

 
ܰሺ݃, ݄ሻ ൌ ௝ܶ

௧ (10) 
 

Other rows of these columns are zero. We should repeat 
this process for all the irregular elements. ௝ܶ is the 
modified rotation matrix of the jth irregular element. For 
truss elements, this matrix contains the cosine of the 
element conductors. This matrix is displayed in the 
following form: 
 
 

For space truss elements 
 ௝ܶ ൌ ሾ ଵܶ| െ ଵܶሿ; ଵܶ ൌ ሾߠܱܵܥ ߚܱܵܥ  ሿߛܱܵܥ

For two-dimensional frames 

  1 21
1 3 3 1 2 2

2 1

1 2

; . . ;

0 0

0 ; 0

0 0 1 0 0 1

j j

Cos Sin Cos Sin

Sin Cos Sin Cos

   
   

  
    

 
    

         
      

s s
T T T T s s T s

s s

T T

 

(11) 

 
 

sj is the stiffness matrix of  j th element in the local 
coordinates system. θ, β and γ are the element angles to x, 
y and z coordinate axes, respectively. By SVD of the 
matrix A1, we can easily reach to decomposition of the 
equilibrium matrix and then analysis results of the 
irregular structure. For this purpose, we act as described in 
the following section. 

 

3.1.4. The SVD of the equilibrium matrix by 
decomposition of ࡭૚ 

In Fig. 2, it was observed that the equilibrium matrix has a 
block diagonal form and its main part is a unit matrix. On 
this basis, decomposition of the equilibrium matrix can be 
limited into the decomposition of ܣଵ. For this purpose, we 
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from the SVD of the ܣଵ using the following equation: 
 

 
t

1 11t
1 1 1 1 11 12 t

12

. . . .
  

    
    

D Z V
A U W V U U

Z Z V
 

(12) 

 
By substituting these matrices in the following forms, 

the SVD of the equilibrium matrix can be obtained as 
illustrated in Fig. 4. 
 

 
 

 
Fig. 4 Matrices containing the left and right singular vectors and 

the singular values matrix of the equilibrium matrix 
 

Partitioning of the singular matrices ଵܸ and ଵܷ accordance 
with zero columns and rows of the matrix ଵܹ, respectively, as 
presented in Fig. 5. 
 

 
 
 

 
 
 

 
Fig. 5 Block presentation of the singular matrices for SVD of 1ܣ 

 
In the above figure, we have ݎଵ ൌ  ଵሻ andܣሺ݇݊ܽݎ

obviously, if the structure is stable, p=0. ܦଵ is a diagonal 
square matrix containing the nonzero singular values of 

the matrix ଵܹ Matrices ଵܸଵ and ଵܸଶ are the set of columns 
of the matrix ଵܸ corresponding to non-zero and zero 
singular values of the matrix ܣଵ, respectively. The matrix, 
 ଵሻ can be obtained from the SVD of the matrixܣሺݒ݊݅݌
 :ଵasܣ
 
ݒ݊݅݌ ሺܣଵሻ ൌ ଵܸଵ. .ଵܦ ଵܷଵ

௧ (13) 
 

Similarly, the general form of the pseudo-inverse of the 
equilibrium matrix can be derived by the form shown in 
Fig. 6. 

 
Fig. 6 Display of the pseudo-inverse of the equilibrium matrix 

 
In the coming sections of the article, depending on the 

irregularity of the problem, merely by decomposition of 
the matrix ܣଵ and determining the required parameters (t, 
i, e, e1, q and p), the above matrices can easily be formed 
for any types of irregularity. 

 

 
Fig. 7 Formation of Vz and Uz accordance with V12 and U12 
 
For the example of this section, the required 

parameters are 4t , 4i , 4e , 01 e and 5f . Thus 

from Figs. 2 and 3 for this structure we have: 
 

4 4

1
1 4

;
   

    
   

I Z I
A A N

Z A Z
 

 
 

1 0.8944 0 0 0

0 0.4472 0 0 0

0 0 0.7071 0.8944 0

0 0 0.7071 0.4472 0

1 0 0.7071 0 0

0 0 0.7071 0 1

0 0.9844 0 0.8944 0

0 0.4472 0 0.4472 1

  
 
 
  
     
 
 
 
 

   

N

 
 

 
We perform the SVD of the matrix ܣଵ. Matrices obtained are as follows: 
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1

0.2620 0.3629 0.1367 0.1189 0.0848 0.1597 0.6273 0.5835 0

0.0612 0.0880 0.0473 0.3281 0.4945 0.7532 0.0989 0.1453 0.1889

0.2247 0.3136 0.0720 0.0715 0.4639 0.3080 0.5478 0.4802 0

0.1665 0.2194 0.0500 0.1030 0.6844 0

  
     


   

V

.4174 0.3466 0.3351 0.1889

0.4515 0.4049 0.0600 0.5609 0.0506 0.1796 0.2607 0.2610 0.3779

0.4430 0.4272 0.1516 0.5309 0.0521 0.1815 0.1342 0.2898 0.4225

0.4962 0.3841 0.3485 0.2840 0.1222 0.1742 0.1249 0.2396 0.5345

 
   
   
    

0.4205 0.4568 0.3907 0.2824 0.1211 0.1748 0.2729 0.2892 0.4225

0.1614 0.1058 0.8189 0.3245 0.1721 0.1085 0.0163 0.0473 0.3779

 
 
 
 
 
 
 
 
 
 
 
      
      

 

 

 t

12 0 0.1889 0 0.1889 0.3779 0.4225 0.5345 0.4225 0.3779   V  
 

   1 1 8 1 1; 2.0579 1.7801 1.5593 1.3128 1.0233 0.9445 0.6269 0.3293diag W D Z D  

 
It can be seen that the matrix ଵܹ has no zero rows. 

Indeed structure is stable and 0p , 1q . The value of q 

can be obtained as 145 q . Using the matrices 

obtained by the above decomposition and Eq. (13), the 
pseudo-inverse of the matrix ܣଵ can be obtained as 
follows: 

 

1

1 0 0 0 1 1 0.5 1

0 0.9642 0 0.0357 0.0714 0.25 0.2321 0.3214

0 0 1 0 0 1 0.5 1

0 0.0357 0 0.9642 0.0714 0.75 0.2321 0.6785

( ) 0 0.0714 0 0.0714 0.8571 0.5 0.0357 0.3571

0 0.0798 0 0.0798 0.1597 0.5590 0.5190 0.7187

0 0.1010 0 0.1010 0

Pinv

 
 

   
  


A

.2020 0.7071 0.0505 0.5050

0 0.0798 0 0.0798 0.1597 0.5590 0.5989 0.7187

0 0.0714 0 0.0714 0.1428 0.5 0.0357 0.3571

 
 
 
 
 
 
 
 
 
 
 

  
    

 
By Figs. 4, 5 and 6, the singular value decomposition 

and pseudo-inverse of the equilibrium matrix ሺܣሻ are 
obtained as follows: 

 
 

4 4 8 4 4 9 4 4 9

8 4 1 8 8 4 1 8 9 9 4 1 9

; ;
( ) ( ) ( )

  

   

     
       
     

I Z I Z I Z
U W V

Z U Z W Z V
 

 t4 4 8 t

9 4 1 9 8

( ) ; ( ) ( )
( )

Pinv Pinv Pinv
Pinv



 

 
  
 

I Z
A A A

Z A

 
After the decomposition of the equilibrium matrix, the 

formation of the flexibility matrix of the structure is 
carried out. 

3.1.5. Structural flexibility matrix 

 .is the block diagonal flexibility matrix of the structure ܨ

As it was stated before, the purpose of the analysis by the 
equilibrium matrix is the separate analysis of the regular 
and irregular parts of structure. 

Indeed ܨ contains the flexibility matrix of the regular 
structure and the irregular elements. Hence, we consider the 
inverse of structural stiffness matrix as regular structure 
felexibility matrix. Indeed, in this process, the regular structure 
is analyzed. Thus, flexibility matrix can be formed as: 
 

1

e

 
  
  

S Z
F

Z F
 (14) 

 
Where ܵିଵ is inverse of the stiffness matrix of the regular 

structure and ܨ௘ is the block-diagonal flexibility matrix of the 
irregular elements with dimension ff  . 

In this example, the inverse of the structural stiffness 
matrix, ܵିଵ, has dimension 88  and the matrix ܨ௘ is as 
follows: 

 
௘ܨ ൌ ݀݅ܽ݃ሼ1 1.4142 1.1180 1.1180 0.5ሽ 

 
According to the block diagonal form of ܨ, we can 

conclude that the regular and irregular parts of structure 
are analyzed independently. To form the inverse of the 
stiffness matrix of the regular structure we could use the 
presented methods in references [19]. 

3.1.6. Concluding points about the method 

According to the matrices obtained, we use equilibrium 
matrix SVD to calculate the nodal displacement of the 
irregular structure. Using the matrices ௭ܸ, ݒ݊݅݌ ,ܨሺܣሻ and 
ܲ, ܳ is formed as follows: 

 
t1 2 3 4 5 9 10 11 12 13

0 10 0 0 70 ... 50.7356 21.5382 15.1825 21.5382 19.2644       
Q  
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By Eq. (4), the vector δ is obtained similarly: 
 

t1 2 3 4 10 11 12 13

444.61 1181.65 395.38 1169.17 ... 30.45 16.97 24.08 9.63         
δ  

 
Finally, by vector δ and Eq. (8), the nodal displacement vector of structure can be derived as follows: 
 

t1 2 3 4 9 10 11 12

444.61 1181.65 395.38 1169.17 ... 720.83 4845.53 55.72 4835.9           
 

3.1.7. An application  

In optimization techniques based on iteration in each 
step the variables change according to some pattern and in 
order to control the effects analysis is repeated. Thus in 
optimization a great deal of time is allocated to the 
analysis. Using the present method, the analysis can be 
simplified, since in each step the results of the previous 
step can be incorporated in the analysis. In fact the 
analysis of each step can be considered as the results of the 
regular structure of the subsequent step and only the 
additional changes can be incorporated. In this way a 
limited amount of operations will be needed for 
performing the analysis. 

3.2. Analysis of regular structures having node shortage 

To analyze the structures that have lost their regularity due 
to the lack of nodes, we take the following procedure: 

In place of the node shortage, we put two pairs of 
imaginary nodes. Instead of the required structural 
elements, two sets of appropriate elements with 
asymmetrical module of elasticity are inserted. Each set of 
elements with positive and negative modulus of elasticity 
will be connected to one of the assumed pairs of node sets. 
The appropriate degrees of freedom are considered for 
each of the assumed. 

In the next step, the regular structure is formed. We 
take this action by separating the elements with negative 
modulus and its related nodes from the already formed 
structure. Elements with negative modulus are considered 
as "Irregular elements" and their related nodes are as 
"Irregular nodes". Equilibrium matrix of the structure is 
established based on the equilibrium equations between 
regular and irregular parts of structure. By the above 
process, 2e1 degrees of freedom should be added to the 
degrees of freedom of the irregular structure, where e1 is 
the number of degrees of freedom that is needed to alter 
the structure into a regular form. 

 
 
 
 

4. Analysis of regular structure with irregular 
supports 

Sometimes, structural irregularity is not related to the 
structural geometry, but it is because of support 
conditions. Indeed, by modifying the support conditions, 
the structure will have simple analysis method. In this 
section, structures with this type of irregularity are 
analyzed by improving the support conditions. 

The main process of this analysis is similar to that of 
the previous section. But at some points there are 
differences that are described through a simple example. In 
the following, first the analysis of structures with irregular 
or lack of supports is studied. Then, the analysis of 
structures with additional support is described. 

4.1. Lack of supports or inappropriate supports 

If there are disproportionate supports in a regular structure, 
we can assume these supports as "irregular nodes" and by 
separating them from the structure, and we can replace 
new support in their places. For this purpose, we act 
similar to the procedure of suggested for the analysis of 
the regular structure with nodes irregularity. Here, first the 
irregular supports with their connected elements are 
separated. We assume two pairs of appropriate imaginary 
support nodes in place of irregular support nodes. Then, 
we should put pairs of elements with asymmetric modulus 
of elasticity in place of the required elements of new 
supports. Sets of elements with positive and negative 
module of elasticity should be connected to the new 
support nodes, separately. Elements with negative 
modulus and their corresponding support nodes are 
"irregular elements and nodes". Here, the parameter e is 
the number of DOFs of the separated irregular supports 
and e1 is the number of DOFs of the added supports. 

Note: if there is a lack of structural support, we should 
act similar to the above process. However, there are no 
inappropriate supports to be separated from structure. This 
means that 0e . In the following, an example is 
presented for illustration of this problem. 

Example: Consider truss structure with 11 bars as 
shown in Fig. 8(a). If the support node 5 becomes fixed, 
then the analysis will be simplified. 
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(a) 

 
 

    
(b) 

 
 

 
(c) 

 

     
(d) 

Fig. 8 (a) A truss structure with 11 bars (b) Improved structure by imaginary nodes and elements along with the irregular separated support 
and its connected elements (c) DOF of the regular structure (d) Separated parts of the structure with their DOFs in local and global 

coordinate systems. 
 
For the analysis of this structure, first we separate the 

irregular support in node 5 and its connected elements. An 
appropriate pair of support nodes (nodes with numbers 7 
and 8) and two pairs of elements with asymmetric 
elasticity modulus are replaced (Fig. 8 (b)). 

Therefore, the irregular elements consist of the 

elements 8, 9, 11, 13 and 15, and the irregular nodes are as 
nodes 5 and 8. According to the described details, used 
parameters in the method will be as: 

 
1e , 01 e , 5f  and 4 ti  
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The matrix ܣଵ can simply be formed: 
 

4 4 4 4

1
1 1 4

5 9

;
 

 

   
    
   

I Z I
A A N

Z A Z
 

0 1 0 1 0

0 0 0 0 0

0 0 0.7071 0 0.7071

0 0 0.7071 0 0.7071

1 0 0.7071 0 0

 
 
 
 
   
  

N

 
 
We find that p=0 and q=4, thus the structure is stable. 

In the following, we calculate the SVD of the matrix 
ଵܸ. With this matrix and Fig. 6, ܲ݅݊ܣݒଵ is provided as a 

matrix of dimension of 913  and the matrix ௭ܸ is obtained 
with dimension 413 . Flexibility matrix  ሺܨሻ is obtained 
by inversion of the stiffness matrix of regular structure and 
the flexibility matrix of the truss element is a 11  matrix: 
 

 
1

e
e

; 2 2 2.8284 2 2.8284diag
 

    
  

S Z
F F

Z F

Using matrices Vz, ܲ݅݊ݒሺܣሻ, ܨ and ܲ, we can obtain the 
vector ܳ and vector ߜ. The vector ∆ is obtained by the 
above and Eq. (8) as follows: 
 

∆ൌ ሾ41.876 െ165.630 െ38.123 െ15.569 
30.938 െ61.876 െ29.061 െ63.753 െ9.061ሿ௧ 

4.2 Analysis of regular structures with additional supports 

Analysis of a regular structure with additional supports is a 
particular case of analysis method of a regular structure 
with irregular supports. Thus, in this case we should 
separate additional supports and their connected elements 
from the irregular structure. These are introduced as 
"irregular nodes and elements". Since in this method we do 
not add any node to the structure, therefore we have 
always e1=0. The process of the formation of the 
equilibrium matrix and the analysis of regular and 
irregular separated parts of structure are similar to the 
method of the previous section. In the following, the 
algorithm for the analysis of regular structure with variety 
of irregularities is provided. 

5. Practical examples 

Example 1: Consider a telecommunications antenna shown 
in Fig. 9(a). The central truss part of the structure has a 
regular form. However, the attached parts (for the dish's 
installation) and also the cables have made structure 
irregular. Here, the regular and irregular parts of structure 
are analyzed separately. Irregular structure has 154 free 
nodes and 470 truss elements. 

 

 

 
 

(a) (b) (c) 
Fig. 9 (a) A three dimensional view of the antenna truss structure with 154 free nodes. (b) Regular structure with its ends closed by 6 

imaginary elements. (c)  Sets of irregular elements separated from the irregular structure. In top of figure, elements with negative modules of 
elasticity are shown. 

 
External load of the structure in dish connection nodes 

are equal to P=10 N. And for all elements we assume
1E A  . We separate the dish holder elements and 

cables as irregular elements from structure. If the end 
nodes at the top of the regular structure are fixed, then it 
can easily be analyzed by the method of Ref. [19]. For 
creating this case, we assume 6 pairs of elements with 
asymmetric modulus of elasticity (similar to the elements 
of structure) at the end nodes of the structure. One end of 
these elements is connected to the structural nodes and the 
other end is connected to the fixed support. Thus, the end 
nodes of structure will be fixed. 

The elements with negative modules of elasticity added 
to the irregular elements. Thus, the central part of the 
structure becomes equivalent to a regular structure of Ref. 
[19] (Fig. 9(b)). The irregular elements consist of 14 
holder truss elements, 6 cable elements and 6 elements 
with negative modules of elasticity (Fig. 9(c)). The 
corresponding parameters are equal to i=45, t=405, e=12, 
e1=0 and f=26. 

Matrix ܣଵ with dimension 7157  can be formed by 
rotation matrix of irregular elements and Eq. (10) and Fig. 
3. Then its singular value decomposition is performed. 
Thus, we have q=14 and p=0. On this basis, the rank of the 
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matrix ܣଵ is 57 (r1=57) and the structure is stable. The 
matrix ଵܸ can be partitioned according to the zero columns 
of the matrix ܣଵ. Resulted matrices ଵܸଵ and ଵܸଶhave 
dimensions 5771  and 1471 , respectively. 

Using the pervious matrices, we obtain the ܲ݅݊ݒሺܣଵሻ 
as a 5771  matrix from Eq. (13). Hence, the matrices ௭ܸ 
and ܲ݅݊ܣݒ can be formed with dimensions 14476  and 

462476 , respectively, by substituting matrices ଵܸଶ and 
 .ଵሻ in the forms of Figs. 6 and 7ܣሺݒ݊݅ܲ

The stiffness matrix of the regular structure will have 
the following form [19]: 

 
ܵ ൌ ,ܭହ଴ሺ2ܨ െܭ,  ሻܭ2

 
Inverse of the stiffness matrix of the regular structure 

with dimension 450450  can be obtained by calculating 
the eigen-values of fifty 99  blocks matrices [19]. These 
eigen-values can be formed as follows: 

 

ߣ ൌ ራ .௜ߣ ;ܭ ௜ߣ

ହ଴

௜ୀଵ

ൌ 2 ቆ1 െ ݏ݋ܥ ൬
ߤ݅
51

൰ቇ 

 
is a 99 ܭ  square matrix. Thus, the flexibility matrix 

with dimension 476476 ܨ  can be obtained by inverse of 
the stiffness matrix of regular structure and the flexibility 
matrix of the irregular elements ሺܨ௘ሻ. 

By Eq. (3), the vector ܳ and by Eq. (4), we will have 
the vector ߜ. Both of these are of dimension 1476 . 

 
t1 2 3 4 473 474 475 476

0 0 0 0 ... 236.565 307.858 317.1463 6.2087      
Q  

 
t1 2 3 4 473 474 475 476

0.5713 22.6313 1.8584 0.0953 ... 709.6964 3214.135 3311.1 64.8211      
δ

 
 
The nodal displacement is obtained by Eq. (8) as follows: 
 

t1 2 3 4 459 460 461 462

0.5713 22.6313 1.8584 0.0953 ... 3523.77 61.5583 2045.8 3538.48          
 

 
For direct analysis, we should find the inverse of a 

matrix of dimension 462462 . While by the presented 
method, we need only the SVD of a 7157  matrix, 
inversion of a 1414   matrix, and finding the eigen-values 
of 50 matrices with dimensions 99 . Indeed, in this 
example, instead of analyzing an irregular structure with 
large degrees of freedom, we convert the problem to the 
analysis of sets of small substructures and small matrices 
for assembling the results of the separated parts of the 
structure. 

Example 2: Consider a bending structure as shown in 

Fig. 10. This structure is composed by 24 stories and each 
story has 91 columns and 162 beams. These are the same 
for all the stories. Parts of the structure in the last two 
floors are not extended, and therefore it becomes irregular. 
On the other hand, 48 truss bars, for increasing the lateral 
stiffness of structure are installed. Thus, this structure is 
affected by two types of irregularities in its form. First, 
that truss bars that do not follow a specific regularity form 
and the other, no extension of the top part of the building 
that is added to structural irregularities. 

 

 

Fig. 10 A three-dimensional view and the side and front views of a 24-storey tower structure 
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Notice that the irregularities in the upper part of the 
structure can be considered as lack of nodes. Thus, we can 
assume pairs of nodes and elements with asymmetric 
modulus of elasticity in the appropriate places and call 
them "first assumed part". We separate the elements with 
negative modulus in this part and truss elements from 
structure. Thus, the lack of elements in end part of the 
structure is compensated resolved. 

If the end nodes of the bending structure in its top were 
fixed, inversion of the stiffness matrix could easily be by 
reference [19]. For this purpose, we attach to end of the 

structure, set of pairs of bending elements (columns) with 
asymmetric modulus of elasticity. These are connected to 
the rigid support from their next ends. Thus, we call them 
"second assumed part". 

We separate elements with negative modulus of this 
part from the structure as irregular elements. Thus, a 
regular structure that has simple analysis method is formed 
(Fig. 11(a)). Irregular elements (those elements with 
negative modulus of the first and second assumed parts of 
structure and truss elements) are shown in Fig. 11(b). 

 
 

 

(a) (b) 
Fig. 11 (a) A regular bending structure that becomes regular by adding imaginary elements. (b) Front and side views of the irregular elements of 

the structure (truss bars in bottom, the first assumed part in the middle, and the second assumed part at the top of the figure are shown). 

 
The number of elements with negative modulus in the 

first assumed part is 240 and in the second assumed part it 
is 91. Thus the discussed parameters in this method are 
i=840, t=11760, 2034f , 0e , 0p  and 5041 e . 

Matrix A1 established by the rotation matrix of the 
irregular elements in Eq. (10) and Fig. 3 with dimension

28741344  . 
We calculate the SVD of this matrix. In this process, we 

have 1530q , 0p  and the non-zero singular value 

matrix (D1) is of dimension 13441344  . For the formation 
of vector Q, inversing a matrix 15301530   will be needed. 
According to Eq. (13), the matrix ܲ݅݊ݒሺܣଵሻ  is formed with 
dimension 13442874  . Thus the matrix Vz with dimension 

153015138   and matrix ܲ݅݊ݒሺܣሻ with dimension 
1360815138   can be established by Figs. 6 and 7. 

For the formation of the flexibility matrix (F) by Eq. 
(14) we form the inverse of the stiffness matrix of the 
regular structure. This matrix can be obtained by 
calculating the eigen-values of 24 matrices with dimension 

546546  utilizing the method of Ref. [19]. The value 546 
in dimension of these matrices represents the number of 
DOFs of each floor of the regular structure (that is as 
repeated substructure of regular structure). Thus it can be 
observed that in this example, we transform the analysis of 
"irregular structure" to the analysis of "substructures of the 
regular structure". 

In Eq. (14), the matrix of Fe is with dimension 
20342034  . Thus, the vector Q from Eq. (3) and similarly 

the vector δ from Eq. (4) are established. Both of these 
vectors are of dimension 115138  . In Eq. (8), the nodal 
displacement vector is obtained as 13608 ൈ 1 a vector. 

Here, we only attend to form the rotation matrix and 
the stiffness matrix of bending elements in Eq. (11). Thus, 
instead of direct analysis that require the inversion of a 

1260012600   matrix, we analyze the irregular structure 
by a more simple method through calculating the SVD of a 

28741344   matrix, inversing of a 15301530   matrix, 
and finding the eigen-values of 24 matrices of dimension

546546  . 
Example 3: Consider cable bridge as shown in Fig. 

12(a). The deck of the bridge is a truss structure that is 
formed by repetition of a substructure. We can analyze this 
part of the structure simply by [19], if it be independent of 
other parts. Thus the holder cables make the structure 
irregular. Structure is symmetric, and two side parts are 
identical. Here, we call the side parts as "first part" and the 
middle part as "second part" and these are analyzed 
simultaneously. 

First part of structure has 110 free nodes of the regular 
structure and 4 irregular nodes and 10 cable irregular 
elements, while the second part has 470 free nodes of the 
regular structure, 22 irregular nodes and 66 cable irregular 
elements. 
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Based on the above figures, parameters of the first part of 
the structure are 318t , 12i , 10f , 12e  and for the 

second part we have 1344t , 66i , 66f , 66e . 

The matrix A1 for the first and second parts of structure 
with dimension 2224  and 132132 , respectively, and 
we calculate their singular value decomposition. 

However, since the external load of the structure is the 
gravity load, the structure will be stable (gravity load and 
loads caused by elongation of the cables have no 
components on vertical direct to the page). On this basis, 
we can analyze the structure by the present method. 

 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 12 (a) A display of the three-dimensional structure of the cable bridge (irregular structure) discussed in Example 3. (b) Front view of the 
irregular structure. (c) Display of the irregular elements (cables) that are separated from the structure. (d) View of the separated regular 

structure, including the side and middle parts. 
 
By decomposition of 1A , for the first part of the structure 

we have 201 r , 2q , 4p  and for the second part, we 

have 1101 r , 22q , 22p . Since p ≠0, therefore both 

parts of structure are unstable. It is interesting to note that the 
value of p is equal to the number of DOFs orthogonal to the 

page in irregular nodes of the structure in Fig. 12(b). 
Hence, according to Eq. (12) and Fig. 5, by partitioning 

the matrices according to the rank of matrices 1A , we 

have: 
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   1 11 22 20 12 22 2 1 11 24 20 12 24 4( ) ( ) ; ( ) ( )    V V V U U U  For second part 

   1 11 132 110 12 132 22 1 11 132 110 12 132 22( ) ( ) ; ( ) ( )    V V V U U U  For second part 

 
Pseudo-inverses of the matrices 1A  are obtained by Eq. 

(13) for all parts with dimensions 2422   and 132×132, 

respectively. we can form  zV  zU  and )(APinv  as 

follows: 
 

318 2 318 4 318

z z
12 22 2 12 24 4 1 22 24

; ; ( )
( ) ( ) ( ( ))

Pinv
Pinv

 

  

     
       
     

Z Z I Z
V U A

V U Z A
 

For the second part: 

1344 22 318 22 1344

z z
12 132 22 12 132 22 1 132 132

; ; ( )
( ) ( ) ( ( ))

Pinv
Pinv

 

  

     
       
     

Z Z I Z
V U A

V U Z A
 

 
Stiffness matrices of the regular structure (deck of 

bridge) are 330330  and 14101410   matrices, 
respectively. Form of these in [22] are ܵ ൌ ,ܣଵଵሺܨ ,ܤ  ሻܣ
and ܵ ൌ ,ܣସ଻ሺܨ ,ܤ ܣ  ሻ , respectively, whereܣ ൌ  ܤ and ܤ2
is a 3030  matrix. Thus, by [19] for calculating the 
inverse of the stiffness matrices of the regular structures, 
we only need to calculate the eigen-values of 11 and 47 
matrices with dimensions 30×30, respectively. 

Flexibility matrices of the structure are obtained as 
follows:  

 
1

330 330

e 10 10

( )

( )






 
  
  

S Z
F

Z F  
For first part of structure 

1
1410 1410

e 66 66

( )

( )






 
  
  

S Z
F

Z F
 

For second part of 
structure 

 
 ௘ is the block diagonal flexibility matrix of theܨ

irregular elements (cables). The vectors ܳ is obtained with 
dimensions 122   and 1132  , respectively. Similarly, the 
vectors δ is obtained with dimensions 122   and 1132  , 
respectively. Because of the instability of the structure we 
need to vectors ߜ in Eq. (5), the nodal displacement 
vectors are obtained. 

Here, the analysis of the irregular structure are 
performed by calculating the SVD of 2224   and 

132132   matrices and finding the inverse of matrices of 
dimensions 22  and 44 , and two  matrices and 
finding eigen-values of 58 matrices with dimensions

3030 . While due to instability of structure, direct 
analysis of structure by inversing their stiffness matrices (

340340   and 14761476   matrices for two parts of 
structure, respectively) is not possible and it requires more 
complex analysis. 

Hence, with this example, we observe the ability of 
method in reducing the size of the required matrices in the 
process of analysis. Additionally, the ability of the method 
in simple analysis of structures for which no simple 
approach is available becomes apparent. 

6. Conclusions 

In this article, an efficient method is presented for the 
analysis of regular structure with additional or lack of 
nodes and supports and elements. The main assumption is 
that the regular structure resulted by elimination of the 
irregularity, has simple analysis. 

The main application of the present method is in 
iterative approaches. As an example, in optimization 
techniques in each step the variables change according to 
some pattern and in order to control the effects, the 
analysis is repeated. Since the changes in each step of 
optimization is a limited amount, thus using the present 
method, the analysis can be simplified and great saving 
can be achieved in the entire process of optimization. 

What distinguishes this method from other irregular 
structure analysis methods is the ability of this method in 
the analysis of unstable structures (stabilized by certain 
external forces). In Example 3, one of common and typical 
applications of this problem is observed. 

The other advantage of this method is its ability in the 
analysis of structures with various types of irregularity. 
Indeed, this method can handle different types of 
irregularity simultaneously. Instead of common irregular 
structure analysis method that are limited to certain types 
and conditions, this method according to general form of 
presented matrices, is capable of analyzing a wide variety 
of irregular structures. 

On the other hand, as it can be seen form the practical 
examples, it is obvious that this method has a positive 
impact on the process of the analysis of irregular 
structures, and it clearly decreases the dimensions of the 
matrices involved.  

For instance, if a stable irregular structure has m DOFs 
in the global coordinate system and if by removing or 
adding the elements or nodes to the structure (for example, 
adding or removing elements with f internal loads, 
removing the additional nodes with e degrees of freedom 
and adding nodes with e1 DOFs to structure) it is  
transformed to a structure with a zC A  rotational 

symmetry (this form of regular structure is obtained by 

2222
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rotational repeating of a  substructures with z degrees of 
freedom for each one) and if regular structure is connected 
by i degrees of freedom to the irregular elements, then 
instead of finding the inverse of a mm  matrix for 
analyzing the irregular structure, via the present method, 
we can perform the entire analysis merely by finding the 
eigen-values of a matrices of dimension zz  and 
calculating of the SVD of )()( 1 fieei   matrix and 

inverting a qq   matrix (where 1eefq  ). 

If a structure is unstable, we should first calculate the 
SVD of matrix of dimension . if p  

and q  are the numbers of zero rows and columns of singular 

value matrix of the above decomposition, for completing the 
process of analysis, we should find the eigen-values of a  
matrices of dimension zz  and inverse two matrices of 
dimensions pp   and qq  . Since the dimensions of these 

matrices are very lower than m , the speed of analysis will 
increase significantly.  

The other advantage of this method is its capability to 
generalizing this method to tackle other possible types of 
irregularities. For example, we can apply it in the same 
idea in the separation of structures consisting of multiple 
regular substructures, each regular structure being 
composed of more simple ones. This issue shows the 
necessity of further studies on this method. 

Table 1 shows the comparison of computational time 
for the examples presented in this paper. Here the direct 
method, method developed by Pellegrino [2], and the 
present method are compared. From this table it can be 
seen that by increasing the size of the structure (DOFs), 
the computational time decreases. 

 

 
Table 1 Comparison of the storage and computational time for different methods 

 Direct Method Pellegrino [2] Method Present Method Ratio 

Example 
No. Inv Dim Time (s) Inv Dim Svd Dim Time (s) Inv Dim Svd Dim Eig Dim Time (s) present

Direct

 

1 [462x462] 0.0339 [8x8] [462x470] 0.1741 [14x14] [57x71] 50x[9x9] 0.0058 5.79 

2 [12600x12600] 330.2260 [22440x22440] [12600x35040] 2071.776 [1530x1530] [1344x2874] 24x[546x546] 27.9592 11.81 

3 
[340x340] 

0.7574 
[220x220] [342x562] 

10.1358 
[2x2] , [4x4] [24x22] 

58x[30x30] 0.0441 17.15 
[1476x1476] [906x906] [1476x2382] 2x[22x22] [132x132] 
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Appendix A: Notations 

m is the number of DOFs of the irregular structure in 
global coordinate system. 

n is the number of internal element forces of the 
irregular structure. 

A is the equilibrium matrix of irregular structure. 
P is the external load vector of the structure. 
Q is the vector of internal forces of the elements of the 

irregular structure. 
F is the block diagonal flexibility matrix of the 

irregular structure. 
Fe is the block diagonal flexibility matrix of the 

irregular elements. 
δ is the nodal displacement vector of the irregular 

structure in local coordinate system. 
Δ is the nodal displacement vector of the irregular 

structure in global coordinate system. 
S is stiffness matrix of regular structure. 
U, V and W are matrices containing of the left and 

right singular vectors and singular value matrix of the 
equilibrium matrix, respectively. 

A1 is part of the equilibrium matrix that is related to the 
DOFs of irregular elements and some DOFs of the regular 
structure that are related to irregular elements. 

N is the matrix containing some columns of the matrix 
A1 corresponding to DOFs of the irregular elements in 
local coordinate system. 

t is the number of unrelated DOFs of the regular 
structure to irregular elements. 

i is the number of related DOFs of regular structure to 
irregular elements. 

q and p are numbers of zero columns and rows of  the 
matrix W, respectively. 

f  is the number of internal forces of the irregular 
elements.  

e is the number of DOFs of the additional nodes.  
e1 is the number of DOFs of node shortage for reaching 

to the regular structure form in irregular structure. 

Appendix B: Description of the main equations of 
the paper 

This section describes the main equations which are 
utilized in this article. Nodal force equilibrium equation is 
mentioned in the global coordinates of structure in Eq. (1). 
In Eq. (2) equilibrium matrix relates the displacement 
vector in local coordinates system to the global 
coordinates. 

General form of the singular value decomposition of 
the equilibrium matrix is as follows: 

 
tVWUA ..  (A1) 

 
U  and V  are matrices containing the left and right 

singular vectors of the equilibrium matrix, respectively. 
W is the diagonal matrix of the singular values of the 
equilibrium matrix. In fact, some of the rows and columns 
in this matrix are zero.  

By decomposition of the equilibrium matrix according 
to Eq. (A1), the pseudo-inverse of this matrix can be 
written as 

 
t

dd UDVApinv ..)( 1  (A2) 

 
Pinv  is the notation used for the pseudo-inverse and D 

is a diagonal square matrix containing the nonzero singular 
values of the equilibrium matrix. By partitioning the 
matrix W according to its nonzero values, we obtain: 

 











ZZ

ZD
W  (A3) 

 
Z is a zero matrix. 
 
Similarly, the matrices V  and U  correspond to the 

partitioning of the matrix W as follows: 
 
   zdzd UUUVVV  ;  (A4) 

 
The matrices dV , dU  and zV , zU  contain the right 

and left singular vectors of the equilibrium matrix 
corresponding to nonzero and zero singular values of the 
equilibrium matrix, respectively.  

According to [2], utilizing the Eqs. (1), (A1), (A2) and 
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(A4), the internal forces of structural elements can be 
presented by the following relation: 

 
..)( zVPApinvQ   (A5) 

 
  is the vector of redundants of the structure.  
The compatibility equations in structural nodes can be 

presented by the following orthogonal relationship: 
 

ZV t
z .  (A6) 

 
On the one hand, the governing equilibrium equation in 

local coordinate system is as follows: 
 

QF .  (A7) 
 
F is the block-diagonal flexibility matrix of the 

structural elements. Here,   is the nodal displacement 
vector in the local coordinate system of the structural 
elements. By substituting Eq. (A5) in (A7) and Eq. (A7) in 
(A6), and by simplification, we have: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

).)(..(.)..( 1 PApinvFVVFV t
zz

t
z

  (A8) 

 
In the following, by substituting  in Eq. (A5), the 

vector Q is derived as 
 

1( ). . ( . . ) . . . ( ).t t
z z z zQ pinv A P V V F V V F pinv A P  (A9) 

 
Similarly, by substituting Q in Eq. (A7), we obtain the 

vector δ. 
Nodal displacement vector Δ is obtained by Eq. (2) 

similar to the formation of Eq. (A5): 
 

 ..)(. z
tt UApinvA   (A10) 

 
If the structure is stable, then []zU . Therefore, the 

vector of nodal displacements of the stable structure is 
found as: 

 

1

( ).

( ). .( ( ). . ( . . ) . . . ( ). )

t

t t t
z z z z

Pinv A

Pinv A F pinv A P V V F V V F pinv A P




  

 
(A11) 
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